bff25f88583b7a37110aa3662f9b2545_20230212155100972.jpg 842300-widescreen-neuron-wallpapers-3840x2160.jpg 41cb34f82252a84a5f12030e267237f7.jpg
 
レボバイオは、創薬研究・創薬事業を進める上で極めて重要な鍵となる遺伝子組換え技術を用いた前臨床研究支援と創薬サービスを提供します
 
また、バイオテクノロジーや先端医療技術の導入により創薬やヘルスケア製品開発をサポートします

Revobio provides preclinical research support and drug discovery services using gene modification technology, which is a crucial key to advancing the pharmaceutical research and drug discovery business.
We also support drug discovery and healthcare product development by introducing biotechnology and advanced medical technology.


REVOBIOからエイジングケアサプリメント商品の第一弾として 「5-デアザフラビン(TND1128)」を主成分とした 「DeaMax|デアマックス」をリリース
 
次世代型NMNとして期待される新しいエイジングケア成分 5-デアザフラビン」を贅沢に配合。 主にクリニックなどの医療施設での処方用に作られたため 他のサプリメントと比べると余計なものが一切入っていません。

REVOBIO has launched "DeaMax", an anti-aging supplement with 5-deazaflavin (TND1128) as the main ingredient.
 
Luxurious combination of 5-deazaflavin, a new anti-ageing ingredient that is expected to become the next generation of NMN.
Designed primarily for prescription use in clinics and other medical facilities
Compared to other supplements, this product contains no unnecessary ingredients.


レボバイオからブレインケアサプリメント第一弾の商品として「プラズマローゲン」を主成分とした「BrainMax|ブレインマックス」をリリース。
 
「BrainMax|ブレインマックス」は、脳の働きのために考えた特別配合となっており、プラズマローゲンに加え、ルンブルクスルベルス、イチョウ葉エキス、フェルラ酸、ビタミンB類などを何度も試作を重ねた最高の配合割合と特別な調合方法によって作られています。

Revobio released "BrainMax" with "Plasmarogen" as its main ingredient as the first product of its Brain Care Supplement line.

"BrainMax" is a special formula designed for brain function. In addition to Plasmarogen, it contains Lumbricus Rubellus, Ginkgo biloba extract, ferulic acid, and B vitamins, etc., in the best possible ratio and in a special formula developed through repeated trial and error.


 

ABOUT US


レボバイオの目的

最先端バイオ研究者に研究の場と成果の還元
社会に最先端のバイオ研究成果の還元と利用可能なしくみの提供

レボバイオの事業

製薬・創薬事業のための研究・試験・評価・認定
健康食品・美容機器・ヘルスケア商品のための研究・試験・評価・認定
健康食品・美容機器・ヘルスケア商品の開発

 
取引先

国公立・私立医学部(共同研究、研究委託)
製薬会社(共同研究、研究委託、論文委託)
医療研究機関(共同研究、研究委託)
化粧品会社(共同開発、開発委託)
厚生労働省(研究委託)

代表者

古里健司

会社住所

Head Office |東京都中央区銀座4 丁目 11-7 第二上原ビル5F-B
R&D | 東京都江東区青海2-3-6
https://revobio.jp
info@revobio.jp


Purpose of Revobio

To provide a place for cutting-edge bio-researchers to conduct their research and to return the results of their research to the public.
To provide society with a mechanism to return and make available the results of cutting-edge bio-research.

Business of Revobio

Research, testing, evaluation and accreditation for pharmaceutical and drug discovery companies.
Research, testing, evaluation and accreditation for health food, beauty equipment and health care products.
Development of health food, beauty equipment and health care products.

Business Partners

Public and private medical schools (joint research, contract research)
Pharmaceutical companies (joint research, contract research, contract thesis)
Medical research institutes (joint research, research outsourcing)
Cosmetic companies (joint development, development outsourcing)
Ministry of Health, Labor and Welfare (research contracts)

CEO

Kenji FURUSATO

Company address

Head Office | Daini-uehara bld 5F-B, Ginza 4-11-7, Chuo-ku, Tokyo, JAPAN
https://revobio.jp
info@revobio.jp

TOPICS

News about Anti-Aging

後天的にエピゲノムを介して老化を制御する仕組みに関する論文

早野元詞(慶應義塾大学医学部精神神経科学教室特任講師)、米国ハーバード大学医学大学院・デイビッド A シンクレア博士ら 60 名以上の研究者が参加する共同研究グループが、新しい老化のモデル動物である ICE( for Inducible Changes to the Epigenome)マウスを作成し、 DNA損傷によって誘発されるエピゲノム変動による老化の速度やタイミングを制御する分子機序について 明らかにしました。このたびその成果が米国科学雑誌『 Cell』(オンライン版)に掲載されました。[JAN 20, 2023]
論文リンク

Paper on mechanisms of acquired epigenome-mediated control of aging.

A collaborative research group of more than 60 researchers, including Motonori Hayano, Ph.D., a specially appointed lecturer in the Department of Neuropsychiatry, Keio University School of Medicine, and David A. Sinclair, Ph.D., Harvard Medical School, USA, has created a new animal model of aging, the ICE (for Inducible Changes to the Epigenome) mice, and uncovered the molecular mechanisms that control the rate and timing of aging through epigenomic changes induced by DNA damage. The results are published online in the journal Cell. [JAN 20, 2023]
Paper Links

アンチエイジング研究

  • 高齢化社会に伴い、疾患の予測、フレイルの予防や治療など様々なニーズが生じている。老化が進む仕組みについて解析を行なっている。生活習慣や環境などの後天的ストレスがアナログ情報であるエピゲノムとして記憶されて老化の速度やタイミングを決定する。
  • 身体機能を反映する生物学年齢の変化と、山中因子を使った生物時計の巻き戻し(老化プロセスの逆転)のコンセプトを提示した。
  • 細胞一つ一つで遺伝子の使い方を決めているエピゲノムに異常が生じることで老化が加速する。
    フレイル予防:人は年を取ると段々と体の力が弱くなり、外出する機会が減り、病気にならないまでも手助けや介護が必要となってきます。 このように心と体の働きが弱くなってきた状態をフレイル(虚弱)と呼びます。都民の皆さんが健康で長寿を目指すため、東京都医師会は行政や関係団体と連携してフレイル対策に取り組んでいます。

Anti-Aging Research

  • With the aging of society, various needs have arisen, such as disease prediction, prevention and treatment of frailty.
  • We analyze the mechanism of aging. Acquired exposures such as lifestyle and environment are stored as analog information, the epigenome, and determine the rate and timing of aging.
  • He introduced the concept of changes in biological age that reflect bodily functions and the use of Yamanaka factors to rewind the biological clock (reversal of the aging process).Abnormalities in the epigenome, which determines how genes are used in each individual cell, accelerate aging.
  • *Frail Prevention: As people age, their bodies become weaker, they have fewer opportunities to get out and about, and they need help and care even when they are not sick.This weakening of mind and body is called frailty. The Tokyo Medical Association is working with the government and related organizations to prevent frailty so that all Tokyo residents can enjoy a long and healthy life.

研究の背景

  • 老化の原因を理解することは、様々な老化関連疾患やフレイルが生じるメカニズムを理解することに繋がります。しかしながら、老化が始まるタイミングや速度を決める分子機構が明らかになっていません。
  • エピゲノムは、DNA にコードされている遺伝子の使い方を調整します。DNA やヒストンの化学修飾をエピゲノムと呼び、生活習慣やストレスなど外的環境に合わせて遺伝子の使い方を調整します。
  • 遺伝子は、突然変異によってその機能や発現が失われ、ガンや動脈硬化などの疾患になります。遺伝子が寿命へ影響する割合は 10-16%と報告されています。一方で生活習慣、ストレスによって変化するエピゲノムを介した加齢に伴う臓器や細胞の機能低下の仕組みは不明です。
  • 「老化」が進む速度やタイミングの分子機序を理解することが、老化を予防、診断、治療する新たな技術の開発へと繋がります。

Background of the study.

  • Understanding the causes of aging will lead to an understanding of the mechanisms by which various age-related diseases and frailty occur. However, the molecular mechanisms that determine when and how fast aging begins are not yet clear.
  • Epigenomes regulate the use of genes encoded in DNA Chemical modifications of DNA and histones, called epigenomes, regulate the use of genes in response to external environments such as lifestyle and stress.
  • Genes lose their function and expression through mutation, leading to diseases such as cancer and atherosclerosis. It is reported that the percentage of genes affecting life span is 10-16%. On the other hand, the mechanism of age-related functional decline of organs and cells via the epigenome, which is altered by lifestyle and stress, is unknown.
  • Understanding the molecular mechanisms of the rate and timing of aging will lead to the development of new technologies for the prevention, diagnosis and treatment of aging.

研究成果と展望

  • ICE マウスによる研究の結果、若い時期のストレス(DNA 損傷)は、エピゲノムとして記憶されます。その結果、老化が加速して白内障や、視神経、脳機能、筋力、骨密度などの低下が出現します。細胞や臓器特異的なエピゲノム、遺伝子発現が変化して身体機能が低下することが示されました。
  • エピゲノム解析を通して老化を早期に診断、定量化し、老化に伴う身体機能を改善する治療方法の開発に繋がることが期待されます。

Research Results and Prospects

  • Studies with ICE mice have shown that stress (DNA damage) in youth is stored as an epigenome. This results in accelerated aging and the appearance of cataracts, as well as declines in optic nerve, brain function, muscle strength, bone density, etc. It has been shown that cell- and organ-specific epigenomes and gene expression are altered, resulting in the decline of bodily functions.
  • It is hoped that early diagnosis and quantification of aging through epigenomic analysis will lead to the development of treatments to improve physical functions associated with aging.